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Executive Summary 

Positive Energy District (PED) has emerged as a critical component of endeavors to accelerate 
the shift towards zero carbon emissions and climate-neutral living environments. While numerous 
innovation projects, programs, and activities have yielded valuable insights into PED 
implementation and operation, there remains a lack of consensus on defining a PED and 
assessing its constituent elements. D5.1 aims to establish a systematic process for characterizing 
PEDs. Initially, nineteen distinct elements of a PED are identified. Subsequently, the potential of 
two AI techniques, Machine Learning (ML) and Natural Language Processing (NLP), in modeling, 
extracting, and mapping these PED elements are explored. Finally, a comprehensive review of 
state-of-the-art research papers is conducted to evaluate their contributions towards assessing 
the effectiveness of ML and NLP models. D5.1 indicates that both ML and NLP exhibit significant 
promise in modeling various PED elements across optimization, control, design, and stakeholder 
mapping domains. Leveraging extensive datasets empowers these models to generate precise 
and actionable insights crucial for PED planning and implementation. It is imperative to develop 
an integrated approach that combines existing and innovative techniques for PED 
characterization. 

1. The need for AI techniques to characterize PEDs 

While PEDs have shown certain shared characteristics, they are inherently shaped by their unique 
local contexts. Cities vary significantly due to diverse factors in geography, history, politics, 
structure, society, law, and economics [1]. Given the inherent complexity of replicating a PED, it 
becomes important to maximize its potential for replication. The attributes of established PEDs 
can facilitate the creation of customized solutions tailored to specific local contexts [2]. These 
characterizations serve as a solid foundation for constructing an effective plan for replicating 
PEDs. Thus, the characterization of PEDs plays a crucial role in identifying common solutions 
that enhance their potential for replication, ultimately contributing to the attainment of climate 
neutrality and energy surplus. To guide the future development of PEDs, a deeper understanding 
of existing practice becomes imperative. This necessitates the acquisition of more extensive 
scientific knowledge concerning PEDs and the most effective methodologies for their operation. 

PEDs are notable for their substantial data generation, stemming from diverse origins. Data can 
be drawn from various entities such as design and construction processes, building services, 
operational and building management systems, energy infrastructure, transportation systems, 
and maintenance and replacement systems. Furthermore, the growing utilization of digital twins 
has streamlined the accumulation of extensive datasets, spanning geometric and non-geometric 
data (pertaining to building characteristics), weather conditions, and energy data. The analysis of 
patterns within this data assumes paramount importance in comprehending the interplay between 
various systems and infrastructures. This scrutiny aids in measuring their effectiveness, a critical 
aspect as PEDs necessitate the harmonious integration of diverse systems and infrastructures 
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for interaction among buildings, users, local energy sources, mobility options, and information and 
communication technology (ICT) systems [3]. 

Artificial intelligence (AI) techniques offer a potent means to scrutinize extensive datasets and 
derive valuable insights regarding the functioning of PEDs. These methodologies have effectively 
addressed a number of applications including load predictions, energy pattern profiling, regional 
energy consumption mapping, benchmarking for building stocks, and the evaluation of retrofit 
strategies. The capacity to model intricate relationships between input and output renders AI 
models highly efficient tools for managing vast and complex data [4]. Despite their growing 
utilization in various domains, there remains a notable need to investigate the extraction of 
comprehensive insights into PED characteristics through AI methods. While AI models are 
increasingly integrated into diverse spheres, the absence of a standardized framework for AI 
techniques in PEDs limits the broader applicability of findings. The establishment of a universal 
framework for AI techniques holds the potential to streamline the analysis of PED performance, 
thereby enhancing its general applicability and effectiveness. 

2. Elements of PED 

Through a comprehensive examination of diverse definitions found in existing literature, a shared 
set of elements defining PEDs emerges. Rather than offering narrative descriptions, these 
elements serve to extract the essence of PEDs by presenting a tangible collection of factors 
crucial to their success. These elements are necessary characteristics that define, implement, 
measure, and evaluate PEDs. For example, energy balance serves as the foundational basis that 
distinguishes PEDs from traditional urban districts in terms of producing more energy than it 
consumes. It is intrinsic quality that make a district "positive energy". By examining environmental 
aspect, energy justice and comfort, if is more feasible to assess the quality of life offered within a 
district. A well-balanced environment and sustainable practices can contribute to a healthier, more 
comfortable living experience for residents. By characterizing PEDs through these elements, 
stakeholders can have a comprehensive understanding and embody the core objectives, thus 
enabling informed decisions, effective management, and continuous enhancement. 

These elements can be individually scrutinized to characterize PEDs effectively, totaling nineteen 
in number. Each element either specifies a vital aspect or facilitates one of the four core principles 
life quality, inclusiveness, sustainability, and resilience and security of energy supply [5]. For 
instance, "comfort" stands as a pivotal metric, impacting both the quality of life and seamless 
interaction with the grid. The production of renewable energy enhances resilience and security in 
the energy supply. These elements are logically grouped into two clusters, as depicted in Figure 
1: the lower semicircle represents the three functions of the urban energy system, while the upper 
semicircle encompasses non-energy considerations. Each function forms a sub-cluster; for 
instance, energy efficiency assumes a higher priority among the three functions. A similar 
clustering approach extends to the non-energy elements. In the upper left quadrant, the three 
sustainability pillars are clustered, alongside a grouping of principle and policy-related elements. 
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The top right quadrant houses elements that spotlight specific facets of local implementation 
processes. 

 

Figure 1: PED elements 

3. Machine learning and natural language processing 

AI means designing and applying algorithms in a computational environment to simulate human 
intelligence and solve complex problems. As the application of AI in many domains has assisted 
people and often worked to improve productivity, the integration of AI techniques into building 
energy management mainly concerns thermal comfort and energy use prediction, building system 
control, fault detection, and building information modelling [6–10]. The evidence from these 
applications, therefore, provides abundant hands-on experience for PED learning and replication. 
Among the various AI techniques, the versatility and scalability of machine learning (ML) and 
natural language processing (NLP) make them highly suitable for large datasets and complex 
problems. These two techniques are also constantly evolving, with new models and algorithms 
being developed to improve their performance all the time. Training ML and NLP models usually 
requires feeding them with large amounts of labeled or unlabeled data and utilizing an algorithm 
to optimize and iteratively refine the parameters to improve their performance. In this section, 
specific applications of ML and NLP on the PED elements or a combination of them are presented. 
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The analysis is based on scientific research papers, implying that only those PED elements that 
have been discussed in literature is presented in the following sub-sections. 

3.1. Machine learning 
ML learns to automate analytical models from data rather than being taught how to improve its 
learning abilities. Deep learning, as a subset of ML, is based on multi-layer artificial neural 
networks that can efficiently model the complex relationships between neurons and recognize 
complex patterns in the input data. ML represents a data-driven approach designed to 
complement physical models. Its potency lies in its capacity to handle intricate non-linear 
relationships within data, accommodating complex interactions and uncertainties. ML models are 
widely embraced due to their user-friendliness, finding applications in energy demand forecasting, 
energy pattern profiling, diverse retrofit strategies, and the prediction of renewable energy 
production [11]. However, the main challenge associated with ML pertains to the acquisition of 
extensive historical data for model training [12]. Obtaining data with finer time resolutions, for 
instance, proves more demanding compared to datasets with coarser resolutions, such as 
quarterly or annual intervals. In instances where real data is unavailable, perhaps due to a lack 
of monitoring, ML models can be trained using synthetic data generated through simulations. 

3.1.1. ML for energy efficiency 
The increase in energy consumption and the global energy crisis has amplified the significance 
of research into energy efficiency. Enhanced energy efficiency not only diminishes energy 
demand but also lessens reliance on external energy sources for PEDs. Over the past few 
decades, numerous studies have delved into the application of ML models to enhance building 
energy efficiency. Furthermore, various investigations have recognized the potential of employing 
industrial data to advance energy efficiency objectives [13]. A framework has been proposed to 
serve as a guideline for process industries in selecting appropriate ML tools to enhance energy 
efficiency goals. In addition, ML has also been used to forecast occupancy behavior and trends, 
with the aim of augmenting energy efficiency. Evaluations of the suitability of different ML 
algorithms in energy-efficient applications focusing on occupancy behavior have been also 
discussed [14]. 

3.1.1.1. ML for ICT 
The term 'Building ICT' encompasses the information technology and communication systems 
within a building that generate data, which can be collected and analyzed to enhance the 
operational efficiency of the building. ICT plays a pivotal role in a PED as it establishes a 
dependable and stable connectivity infrastructure, linking active and passive devices utilized by 
residents in smart cities [15]. The entire process of designing, making decisions, and 
implementing a sustainable and intelligent building system relies on an ICT framework that can 
accommodate the integration of ML methods [16]. To attain the necessary level of ICT 
performance, ML is indispensable for dynamically and continuously adapting network behavior. 
Data acquired from IoT sensors strategically placed throughout a smart city can be effectively 
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managed by ML to optimize resource and asset utilization [17]. To enhance energy efficiency, 
ICT enables the acquisition of extensive data, its processing, and preparation for practical use. 

3.1.1.2. ML for building load 
ML can play a crucial role in assessing energy loads and balances by forecasting the heating, 
cooling, ventilation, and electrical energy requirements for buildings, both at the individual building 
level and at the district level. Among these efforts, 57% have focused on individual buildings, 
while 43% have addressed multiple buildings [18]. Collectively, research has contributed to the 
utilization of ML-based energy consumption predictions as a means of evaluating diverse energy-
saving techniques. Energy predictions facilitate demand-side management for making intelligent 
control decisions, analyzing and balancing energy supply and demand, and assessing a building's 
energy flexibility based on smart grid strategies [19]. It has also been commonly recognized that 
ML methods demonstrate superior accuracy in the short term and are more adept at forecasting 
for brief time intervals compared to longer ones, such as a year or more [20]. Although this 
capability is valuable in the context of PEDs for short-term energy sharing planning, it is imperative 
for PED development to generate precise long-term predictions for shaping energy supply 
strategies and making capital investments in energy-efficient applications. 

3.1.2. ML for sustainable society 
Renewable energy sources play a vital role in the electricity grid, offering advantages in terms of 
reliability, cost-effectiveness, and environmental sustainability. While the majority of ML 
applications in renewable energy are focused on predictions for solar and wind energy, there is a 
broader spectrum of studies utilizing ML models to simulate energy production from renewable 
sources. ML approaches are instrumental in sustainability assessments, aiding decision-makers 
in identifying actions to enhance sustainability. This is particularly important as urban areas strive 
to become more inclusive, safe, resilient, and sustainable [21]. Supervised ML methods have 
predominantly been applied for prediction tasks, while unsupervised techniques have found utility 
in developing novel energy sector products and materials. Nevertheless, the availability and 
refinement of data have played a pivotal role in the adoption of ML within the energy sector. 

Indoor comfort significantly influences the well-being and contentment of building occupants. 
When the indoor environment becomes uncomfortable, occupants may consider altering the 
building's HVAC system or lighting, potentially leading to detrimental effects on the building's 
energy efficiency. Consequently, this could disrupt the overall energy equilibrium within the PED. 
Several ML models can be employed to create personalized comfort systems. These personal 
comfort models, founded on occupants' heating and cooling preferences, can be integrated into 
daily comfort management routines, elevating occupant satisfaction levels and optimizing energy 
utilization [22]. 

3.2. Natural language processing 
As a sub-field of AI, NLP integrates linguistics and computer science to enable a computer to 
process and understand natural language data. The most common data source for helping a 
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computer to develop rules for decoding information comes in the form of audio and text. Typical 
NLP tasks comprise named entity recognition, part of speech tagging, topic modeling, machine 
translation, and text classification. Sometimes, as indicated in Figure 2, NLP tasks need to be 
executed by using ML or a deep learning method. In these cases, there can be overlaps between 
solving an NLP task and ML algorithms. 

 
Figure 2: ML and NLP 

3.2.1. NLP for energy efficiency 
Research papers have been widely assembled to serve as documents for training NLP models 
[23,24]. One example is to analyze papers with the objective of uncovering the relationships 
between data science and energy efficiency across four categories: data, data science, energy 
efficiency, and phase [25]. An NLP method word2vec has been mostly employed to represent 
each word within these categories as a high-dimensional vector. The resulting usability relation 
extraction reveals that passive design, demand-controlled ventilation, model predictive controls, 
fault detection and diagnosis, and retrofit analysis make more frequent use of data. Another 
method part of speech (POS) tagging can be applied to preprocess energy audit report data 
containing descriptions of energy conservation measures (ECM). In this method, the frequency 
of each word was computed to create ECM dictionaries based on the auditors' recommendations 
[26]. 

3.2.1.1. NLP for load 
Modeling building energy consumption is a valuable tool for enhancing energy efficiency as it 
provides insights into energy utilization patterns and identifies areas where energy savings can 
be optimized. By understanding energy usage more comprehensively, it becomes possible to 
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pinpoint inefficient energy consumption areas and suggest strategies for achieving substantial 
energy savings while maintaining occupant comfort. An innovative approach involved the 
development of an energy2vec model based on word2vec, which utilized time series building load 
data with a one-minute window length, incorporating appliance status as well [27]. The embedded 
vectors captured contextual information about energy profiles, reflecting residents' habits and 
appliance usage. Varied sliding window lengths for word embeddings can be employed to 
separate the load attributed to different appliance operating cycles [28]. Addressing the challenge 
of encoding categorical attributes and identifying the most relevant ones, a solution was found by 
applying word2vec to these attributes before fitting an attention-based Long Short-Term Memory 
(LSTM) model [29]. This approach offers distinct advantages, particularly for medium- and long-
term load forecasting. Beyond word2vec, other techniques have also contributed to understanding 
energy-saving trends and outlining the applicability of machine learning methods in assessing 
energy consumption and intelligent computing [28,30]. 

3.2.2. NLP for renewable energy 
PEDs stand to gain significant advantages from the production of renewable energy, as it grants 
them access to sustainable, carbon-neutral energy sources. Local renewable energy production 
ensures energy independence and enhances PEDs' resilience. Topic modeling is a useful method 
to analyze research papers, aiming to uncover the key factors contributing to the success and 
growth of renewable energy projects [31]. The identified factors can be prioritized as follows: (1) 
effective government policies; (2) robust public-private partnerships with risk-sharing 
mechanisms; (3) community support and engagement; (4) favorable fiscal incentives and terms; 
and (5) access to skilled talent. POS tagging has also been applied to filter out irrelevant words 
from abstracts. This process enables the identification of topics, encompassing both trending and 
less-explored subjects within current research on renewable energy [32]. Hot topics in this 
research domain may encompass energy storage, photonic materials, nanomaterials, and 
biofuels, while less-discussed areas could relate to sustainable development and agriculture. A 
critical research challenge lies in devising methods to establish and optimize renewable energy 
systems effectively within PEDs. 

3.2.3. NLP for context and market 
Contextual factors play a pivotal role in optimizing the design of PEDs to align with local resources, 
policies, and constraints. Topic modeling has emerged as the preferred method for capturing 
these localized nuances. For instance, data from reports pertaining to low-carbon transitions can 
be employed to gain insights into how local governments interpret low-carbon transitions and to 
reveal primary topics. Topic modeling is also instrumental in clarifying the objectives of smart city 
projects from the perspectives of urban leaders and citizens. This approach enables city officials 
to effectively involve residents in smart city project development while establishing a 
communication baseline that took into account diverse cultural, demographic, geographic, and 
economic factors within the community [33,34]. 
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The establishment of essential infrastructure for managing the supply and demand of renewable 
energy sources within PEDs also integrates various energy technologies into the energy market. 
Leveraging a dataset of approximately 100,000 website comments, a hybrid approach combining 
BERT and bidirectional LSTM has been employed to model public sentiment. This enabled 
stakeholders to provide precise technical support in the energy market, ensuring effective 
management of renewable energy resources [35]. 

3.2.4. NLP for land use 
Effective urban planning and land use play pivotal roles in developing PEDs. One notable 
approach is the adoption of a compact district structure, which can significantly reduce energy 
transportation and waste. The concept of Points of Interest (POIs) and the utilization of 
Geographic Information System (GIS) data offer valuable methods for land use identification by 
analyzing the types and spatial distribution of facilities within a specific geographical area. While 
quantifying the relationship between the spatial distribution of POIs and land use types has posed 
challenges, innovative solutions have emerged. For instance, a novel approach was introduced 
for developing a shortest path connection to represent sequential POIs for word embedding [36]. 
In this context, each POI is analogous to a word, and each traffic analysis zone is considered as 
a document. However, it's worth noting that converting spatial data into sequential document data 
may have limitations due to the 2D distribution of POIs [37]. Instead, word frequency can be used 
to represent the distribution of POI types, which demonstrated high performance in clustering 
functional regions. Additionally, mobility patterns have recognized as influential factors and 
treated as "words" in a topic modeling analysis of regional functions, thus accounting for the 
impact of metadata within a region [38]. These innovative approaches contribute to our 
understanding of the intricate relationship between urban planning, land use, and the 
development of PEDs. 

4. Features and algorithms 

As illustrated in Figure 3, several key features and algorithms, along with their respective functions 
or data requirements for specific elements for ML and NLP, have be summarized in D5.1. For 
instance, the powerful BERT (*BERT* representing variations of BERT) language model can be 
swiftly deployed to construct a comprehensive representation of a PED by enhancing semantic 
interoperability among buildings by scrutinizing building metadata. This modeling framework 
directly facilitates efficient monitoring and optimization of energy consumption within buildings, 
thereby bolstering overall energy efficiency. Topic modeling is a statistical model used to discover 
abstract topics within a collection of documents. It is efficient to extract concrete guidelines from 
policies, regulations and legislations that govern activities to enhance comprehension 
administrative framework. Another example is the utilization of deep Artificial Neural Networks 
(ANNs) to enhance indoor comfort through intricate system control. This sophisticated model 
structure, supported by a wealth of data, effectively captures the nonlinear dynamics of a system, 
enabling intelligent control actions in complex environments. The choice of these AI paradigms, 
whether employed in concert or in isolation, should ideally align with the specific phase of a PED's 
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development. During the design phase, stakeholder matching techniques could identify optimal 
sustainable design strategies. Conversely, evolutionary algorithms could come to the fore during 
the implementation phase to optimize the placement and sizing of renewable energy systems. 

 

 
Figure 3: Key features and algorithms of ML and NLP in PED characterization and replication 

5. Summary 

In D5.1, we have briefly reviewed the state-of-the-art techniques in machine learning and natural 
language process for characterizing PEDs. Nineteen elements, including both energy and non-
energy facets of PED, have been extracted from existing literature. The predominant models in 
ML focus on ANN, SVM, and tree-based methods, each instrumental for prediction and 
classification across various stages. For NLP, topic modeling, word embedding, and the training 
of large language models like BERT are pivotal for tasks for stakeholder matching, sentiment 
analysis, and metadata examination. However, it's noteworthy that certain elements have not yet 
been found for demonstrating modeling outcomes through ML or NLP techniques. These include 
aspects like renewable energy carriers, grid integration, energy balance, and considerations of 
justice. Given that PEDs encompass a wide range of spatial and temporal scales, along with 
intricate relationships between buildings, urban infrastructure, and energy systems at the district 
level, it is imperative to utilize existing urban-scale modeling approaches for PED research. In 
addition, there is currently no direct link between the modeling outcomes produced by ML or NLP 
and the actual operation of a PED. PED characterization frequently relies on just one element, 
neglecting the influence of factors like policy, societal acceptance, and economic feasibility, all of 
which are pivotal to the success of PEDs. To achieve the intended results, it is imperative to adopt 
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a holistic approach when evaluating PEDs, wherein ML and NLP can be integrated with other 
dimensions of PED planning and execution. 
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